1/2^(2n)=256

Simple and best practice solution for 1/2^(2n)=256 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/2^(2n)=256 equation:



1/2^(2n)=256
We move all terms to the left:
1/2^(2n)-(256)=0
Domain of the equation: 2^2n!=0
n!=0/1
n!=0
n∈R
We multiply all the terms by the denominator
-256*2^2n+1=0
Wy multiply elements
-512n^2+1=0
a = -512; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-512)·1
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*-512}=\frac{0-32\sqrt{2}}{-1024} =-\frac{32\sqrt{2}}{-1024} =-\frac{\sqrt{2}}{-32} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*-512}=\frac{0+32\sqrt{2}}{-1024} =\frac{32\sqrt{2}}{-1024} =\frac{\sqrt{2}}{-32} $

See similar equations:

| (2w+5)(4w+1)=180 | | 3(n-1)(n+2)=54 | | 80=11x*1 | | 4x(3=5)-10= | | 1=k(9) | | 1=k(90 | | 1=k9 | | 4x²-2x=90 | | 9x+7=5+15x | | 10x+10=3+11x | | z+9=30 | | 2n^2+10n+7=0 | | 59=3+8x | | x/475=20/100 | | 4x-1=8x-12x+64 | | -4k+2(5k-6)=13k-39 | | x/36=25/100 | | 6x^-4x+6=0 | | 12t+10=10 | | 12)-26-4a=-(6+8a) | | x2^+4x+6=0 | | 5q-6q=3 | | 60=14x+4 | | 60=14x*4 | | r2-8=32 | | 2h/3-20=610/21 | | 130=17.5(x)-10 | | 3x=(-105)+6 | | 7+3r+3=8+3r | | 3m+7=31-m | | m+7=-12 | | `6(2c+6)=-48` |

Equations solver categories